SOLVING EQUATIONS Solve the equation.

3.
$$3x^2 - 3 = 0$$

4.
$$2x^2 - 32 = 0$$

5.
$$4x^2 - 400 = 0$$

6.
$$2m^2 - 42 = 8$$

7.
$$15d^2 = 0$$

8.
$$a^2 + 8 = 3$$

9.
$$4g^2 + 10 = 11$$

10.
$$2w^2 + 13 = 11$$

9.
$$4g^2 + 10 = 11$$
 10. $2w^2 + 13 = 11$ **11.** $9q^2 - 35 = 14$

12.
$$25b^2 + 11 = 15$$

13.
$$3z^2 - 18 = -18$$

13.
$$3z^2 - 18 = -18$$
 14. $5n^2 - 17 = -19$

15. ★ MULTIPLE CHOICE Which of the following is a solution of the equation $61 - 3n^2 = -14$?

- (A) 5
- **B**) 10
- **(C)** 25
- (D) 625

16. ★ MULTIPLE CHOICE Which of the following is a solution of the equation $13 - 36x^2 = -12$?

- **(A)** $-\frac{6}{5}$ **(B)** $\frac{1}{6}$
- $\odot \frac{5}{6}$
- (D) 5

APPROXIMATING SQUARE ROOTS Solve the equation. Round the solutions to the nearest hundredth.

17.
$$x^2 + 6 = 13$$

18.
$$x^2 + 11 = 24$$

19.
$$14 - x^2 = 17$$

20.
$$2a^2 - 9 = 11$$

21.
$$4 - k^2 = 4$$

22.
$$5 + 3p^2 = 38$$

23.
$$53 = 8 + 9m^2$$

24.
$$-21 = 15 - 2z^2$$

$$(25)$$
 $7c^2 = 100$

26.
$$5d^2 + 2 = 6$$

27.
$$4b^2 - 5 = 2$$

28.
$$9n^2 - 14 = -3$$

ERROR ANALYSIS Describe and correct the error in solving the equation.

30.
$$2x^2 - 54 = 18$$

The solution is 6.

31.
$$7d^2 - 6 = -17$$

$$7d^{2} - 6 = -17$$

$$7d^{2} = -11$$

$$d^{2} = -\frac{11}{7}$$

$$d \approx \pm 1.25$$

The solutions are about -1.25 and about 1.25.

SOLVING EQUATIONS Solve the equation. Round the solutions to the nearest hundredth.

32.
$$(x-7)^2=6$$

33.
$$7(x-3)^2 = 35$$

34.
$$6(x+4)^2 = 18$$

35.
$$20 = 2(m + 5)^2$$

36.
$$5(a-2)^2 = 70$$

37.
$$21 = 3(z + 14)^2$$

38.
$$\frac{1}{2}(c-8)^2 = 3$$

39.
$$\frac{3}{2}(n+1)^2 = 33$$

40.
$$\frac{4}{3}(k-6)^2=20$$

SOLVING EQUATIONS Solve the equation. Round the solutions to the nearest hundredth, if necessary.

41.
$$3x^2 - 35 = 45 - 2x^2$$
 42. $42 = 3(x^2 + 5)$

42.
$$42 = 3(x^2 + 5)$$

43.
$$11x^2 + 3 = 5(4x^2 - 3)$$

44.
$$\left(\frac{t-5}{3}\right)^2 = 49$$

45.
$$11\left(\frac{w-7}{2}\right)^2 - 20 = 101$$
 46. $(4m^2 - 6)^2 = 81$

46.
$$(4m^2 - 6)^2 = 81$$

COMPLETING THE SQUARE Find the value of c that makes the expression a perfect square trinomial. Then write the expression as the square of a binomial.

3.
$$x^2 + 6x + c$$

4.
$$x^2 + 12x + c$$

5.
$$x^2 - 4x + c$$

6.
$$x^2 - 8x + c$$

7.
$$x^2 - 3x + c$$

8.
$$x^2 + 5x + c$$

9.
$$x^2 + 2.4x + c$$

10.
$$x^2 - \frac{1}{2}x + c$$

11.
$$x^2 - \frac{4}{3}x + c$$

SOLVING EQUATIONS Solve the equation by completing the square. Round your solutions to the nearest hundredth, if necessary.

12.
$$x^2 + 2x = 3$$

13.
$$x^2 + 10x = 24$$

14.
$$c^2 - 14c = 15$$

15.
$$n^2 - 6n = 72$$

16.
$$a^2 - 8a + 15 = 0$$
 17. $y^2 + 4y - 21 = 0$

17.
$$y^2 + 4y - 21 = 0$$

18.
$$w^2 - 5w = \frac{11}{4}$$

$$(19) z^2 + 11z = -\frac{21}{4}$$

20.
$$g^2 - \frac{2}{3}g = 7$$

21.
$$k^2 - 8k - 7 = 0$$
 22. $v^2 - 7v + 1 = 0$

22.
$$v^2 - 7v + 1 = 0$$

23.
$$m^2 + 3m + \frac{5}{4} = 0$$

24. \bigstar **MULTIPLE CHOICE** What are the solutions of $4x^2 + 16x = 9$?

(A)
$$-\frac{1}{2}, -\frac{9}{2}$$
 (B) $-\frac{1}{2}, \frac{9}{2}$ **(C)** $\frac{1}{2}, -\frac{9}{2}$ **(D)** $\frac{1}{2}, \frac{9}{2}$

B
$$-\frac{1}{2}, \frac{9}{2}$$

©
$$\frac{1}{2}$$
, $-\frac{9}{2}$

(D)
$$\frac{1}{2}$$
, $\frac{9}{2}$

25. \bigstar **MULTIPLE CHOICE** What are the solutions of $x^2 + 12x + 10 = 0$?

(A)
$$-6 \pm \sqrt{46}$$

(A)
$$-6 \pm \sqrt{46}$$
 (B) $-6 \pm \sqrt{26}$ **(C)** $6 \pm \sqrt{26}$ **(D)** $6 \pm \sqrt{46}$

©
$$6 \pm \sqrt{26}$$

D
$$6 \pm \sqrt{46}$$

SOLVING QUADRATIC EQUATIONS Use the quadratic formula to solve the equation. Round your solutions to the nearest hundredth, if necessary.

3.
$$x^2 + 5x - 104 = 0$$

5.
$$6x^2 - 2x - 28 = 0$$

7.
$$-z^2 + z + 14 = 0$$

9.
$$4w^2 + 20w + 25 = 0$$

11.
$$-6g^2 + 9g + 8 = 0$$

SOLVING QUADRATIC EQUATIONS Use the quadratic formula to solve the equation. Round your solutions to the nearest hundredth, if necessary.

13.
$$x^2 - 5x = 14$$

15.
$$9 = 7x^2 - 2x$$

$$\mathbf{19.} \ 6z^2 = 2z^2 + 7z + 5$$

21.
$$4t^2 - 3t = 5 - 3t^2$$

23.
$$7n + 5 = -3n^2 + 2$$

17. $-10 = r^2 - 10r + 12$

25. \bigstar **MULTIPLE CHOICE** What are the solutions of $x^2 + 14x = 2x - 11$?

- (A) -2 and -22 (B) -1 and -11 (C) 1 and 11

- **(D)** 2 and 22

ERROR ANALYSIS Describe and correct the error in solving the equation.

27.
$$-2x^2 + 3x = 1$$

$$x = \frac{-3 \pm \sqrt{3^2 - 4(-2)(1)}}{2(-2)}$$

$$= \frac{-3 \pm \sqrt{17}}{-4}$$

$$x \approx -0.28 \text{ and } x \approx 1.78$$

CHOOSING A METHOD Tell what method(s) you would use to solve the quadratic equation. Explain your choice(s).

29.
$$5x^2 = 25$$

31.
$$m^2 + 5m + 6 = 0$$

33.
$$-10g^2 + 13g = 4$$

SOLVING QUADRATIC EQUATIONS Solve the quadratic equation using any method. Round your solutions to the nearest hundredth, if necessary.

35.
$$x^2 - 8x = -16$$

37.
$$x^2 = 12x - 36$$

39.
$$-4x^2 + x = -17$$

41.
$$-2x^2 + 5 = 3x^2 - 10x$$

 \bigcirc **GEOMETRY** Use the given area A of the rectangle to find the value of x. Then give the dimensions of the rectangle.

43.
$$A = 91 \text{ m}^2$$

44.
$$A = 209 \text{ ft}^2$$

- **46. ADVERTISING** For the period 1990–2000, the amount of money y (in billions of dollars) spent on advertising in the U.S. can be modeled by the function $y = 0.93x^2 + 2.2x + 130$ where x is the number of years since 1990. In what year was 164 billion dollars spent on advertising?
- **CELL PHONES** For the period 1985–2001, the number y (in millions) of cell phone service subscribers in the U.S. can be modeled by the function $y = 0.7x^2 4.3x + 5.5$ where x is the number of years since 1985. In what year were there 16,000,000 cell phone service subscribers?

- **49. MULTIPLE REPRESENTATIONS** For the period 1997–2002, the number y (in thousands) of 16- and 17-year-olds employed in the United States can be modeled by the function $y = -46.7x^2 + 169x + 2650$ where x is the number of years since 1997.
 - **a. Solving an Equation** Write and solve an equation to find the year during which 2,500,000 16- and 17-year-olds were employed.

USING THE DISCRIMINANT Tell whether the equation has two solutions, one solution, or no solution.

3.
$$x^2 + x + 1 = 0$$

5.
$$-2x^2 + 8x - 4 = 0$$

7.
$$9v^2 - 6v + 1 = 0$$

$$9.25p^2 - 16p = 0$$

11.
$$10 = x^2 - 5x$$

13.
$$-3g^2 - 4g = \frac{4}{3}$$

15.
$$3n^2 + 3 = 10n - 3n^2$$

17.
$$w^2 - 7w + 29 = 4 - 7w$$

19. \bigstar MULTIPLE CHOICE How many solutions does $-x^2 + 4x = 8$ have?

- (A) None
- (B) One
- C Two
- (D) Three

ERROR ANALYSIS *Describe* and correct the error in finding the number of solutions of the equation.

21.
$$3x^2 - 7x - 4 = -9$$

$$b^{2} - 4ac = (-7)^{2} - 4(3)(-4)$$

$$= 49 - (-48)$$

$$= 97$$

The equation has two solutions.

FINDING THE NUMBER OF x**-INTERCEPTS** Find the number of x-intercepts of the graph of the function.

23.
$$y = 2x^2 - x - 1$$

25.
$$y = 2x^2 - 5x + 5$$

27.
$$y = 6x^2 + x + 2$$

29.
$$y = \frac{1}{4}x^2 - 3x + 9$$

REASONING Give a value of c for which the equation has (a) two solutions, (b) one solution, and (c) no solution.

31.
$$x^2 - 2x + c = 0$$

USING THE DISCRIMINANT Tell whether the vertex of the graph of the function lies above, below, or on the *x*-axis. *Explain* your reasoning.

35.
$$y = 3x^2 - 6x + 3$$